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Abstract. In physical models it is well understood that the aggregate behaviour of a system is not in one
to one correspondence with the behaviour of the average individual element of that system. Yet, in many
economic models the behaviour of aggregates is thought of as corresponding to that of an individual. A
typical example is that of public goods experiments. A systematic feature of such experiments is that,
with repetition, people contribute less to public goods. A typical explanation is that people “learn to play
Nash” or something approaching it. To justify such an explanation, an individual learning model is tested
on average or aggregate data. In this paper we will examine this idea by analysing average and individual
behaviour in a series of public goods experiments. We analyse data from a series of games of contributions
to public goods and as is usual, we test a learning model on the average data. We then look at individual
data, examine the changes that this produces and see if some general model such as the EWA (Expected
Weighted Attraction) with varying parameters can account for individual behaviour. We find that once
we disaggregate data such models have poor explanatory power. Groups do not learn as supposed, their
behaviour differs markedly from one group to another, and the behaviour of the individuals who make
up the groups also varies within groups. The decline in aggregate contributions cannot be explained by
resorting to a uniform model of individual behaviour. However, the Nash equilibrium of such a game is a
total payment for all the individuals and there is some convergence of the group in this respect. Yet the
individual contributions do not converge. How the individuals “self-organsise” to coordinate, even in this
limited way remains to be explained.

PACS. 05.65.+b Self-organized systems – 02.50.-r Probability theory, stochastic processes, and statistics

1 Introduction

Perhaps the most commonly cited feature of complex sys-
tems is that the behaviour of the aggregate is not the same
as that of the component parts. In analysing the behaviour
of a system of interacting particles in physics or a biologi-
cal system the behaviour of the organism is not similar to
that of the individuals, particles in the one case, or cells
in the other. Yet, in economics we frequently build mod-
els based on hypotheses about individuals’ behaviour and
then test these on aggregate behaviour. The assumption
is that the aggregate can reasonably be taken to behave
like an individual. Thus, if we cannot reject our individ-
ual based model at the aggregate level then we conclude
that it is a valid model of how people are behaving. Our
purpose in this paper is to suggest that this is a mislead-
ing approach. To do this we examine data from a series
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of experiments on contributions to public goods and show
that while the average behaviour seems to correspond to
a reasonable individual model, neither the groups nor the
individuals playing the game do so.

In such games individuals decide how much of their
money to keep and how much to contribute to a public
good which everybody will enjoy. If we look at a one-shot
public good game there are two useful benchmarks. On
the one hand there is that solution which maximises the
total pay-off, the Collective Optimum (CO) and on the
other there is the “Nash Equilibrium”, (NE). In the lat-
ter, given what the other players contribute, each player
chooses what is in his own best interest, i.e. his “best
response” to the others actions. We should, of course, ob-
serve, that in all but the simplest games, both the CO
and the NE of the one shot game are defined as a total
contribution to be divided among the players. For this
reason the literature has focused on the symmetric equi-
libria as a test since there are many asymmetric equilib-
ria. Public goods games are useful since we have some
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well-established stylised facts concerning them and these
can be compared with the theoretical predictions. Indeed,
there is a wealth of information from public goods experi-
ments showing that, with respect to the Nash equilibrium
of the one-shot game people initially over-contribute to
public goods but that, with repetition, they contribute
less. Although these experiments have too few rounds, in
general, to make meaningful statements about the “con-
vergence” of the total contributions, they do decline to-
wards the Nash equilibrium. What the players in these ex-
periments are faced with is a finite repeated game, which
can be solved by backward induction. The solution to this
problem in the standard linear model is one of a dom-
inant strategy in which people contribute nothing from
the outset. However, it is well established that this is not
what actually happens (see e.g. Ref. [1]). Indeed since in-
dividuals do not play in this way, we cannot attribute the
observed behaviour to that associated with an equilibrium
of the finite repeated game. Furthermore players do not es-
tablish the cooperative, or socially optimal outcome (CO)
and indeed, in general, move collectively away from such
a solution. The way in which this is explained is that it
takes some time for people to understand what is hap-
pening, and that they “learn to play Nash” or something
approaching it. The purpose of this paper is to examine
this idea by analysing average and individual behaviour
in a series of public goods experiments.

There are two very different views of learning in games.
Population learning suggests that the configuration of
strategies in a population game will converge towards
some limit, which may or may not be a solution of the
one-shot game. This, it is argued, is because more suc-
cessful strategies take over from those that perform less
well. This simple evolutionary argument does not explain
how the strategies are replaced. But this is the sort of idea
invoked by Saijo and Yanaguchi [2], for example, who clas-
sified certain people, from their behaviour, as Nash and
found that at the beginning of their public goods exper-
iments 50% of players were “Nash” and, at the end 69%
fell into this category. This makes it tempting to believe
that the population was evolving towards Nash. But this
raises an important question. Is it true that the people
who switched had “learned to play Nash”, and if so, how
and why?

An alternative approach is to model the individual
learning process and to see if observed behaviour, partic-
ularly that in experiments, corresponds to such a model.
The usual approach is to assume that all individuals learn
in the same way and then to test the learning model on the
average observed data (see Ref. [3]). This is very common
practice and often gives rise to rather convincing results.
However, as Ho et al. [4], point out, the estimated param-
eters for the representative individual may not coincide
with the average parameters of the population. Further-
more, this approach is fundamentally flawed. To assume
that the average player behaves in a certain way is to give
way to the same temptation as that offered by the “repre-
sentative agent” in macroeconomics. It is not, in general
logically consistent to attribute the characteristics of an

individual to average behaviour, if for example, we reject
the model, how do we know whether we are rejecting the
model itself, or the hypothesis that all agents learn ac-
cording to the same model?

One way out is to assume that individuals behave ac-
cording to the same learning model but differ in their
parameters. This is the approach adopted, for example,
by Ho et al. [4]. Two basic classes of rules have been
used. The first of these are the “reinforcement” models
in which strategies are updated on the basis of their re-
sults in the past, (an approach based on the work of Bush
and Mosteller, see e.g. Roth and Erev [3] and Mookerjhee
and Sopher [5]). The second are the so-called “belief”
models in which agents update their anticipation of their
opponents’ behaviour on the basis of their previous be-
haviour, fictitious play being a good example (see e.g. Fu-
denberg and Levine [6]) A more general model, (experi-
ence weighted attraction learning EWA), which incorpo-
rates both type of rule has been introduced by Camerer
and Ho [7].

Another possibility is not to find a rule, which encom-
passes others as special cases, but to allow for different
rules and simply to try, on the basis of observed behaviour,
to assign agents to rules. This is the procedure followed
by Cheung and Friedman [8], Stahl [9] and Broseta [10].
There are at least two problems with this sort of approach.
Firstly, the rules specified are necessarily arbitrarily cho-
sen, and secondly, the tests are not very powerful since, in
such situations, the number of observations is, in general,
not very large.

The last and most important point for this paper is
that the Nash Equilibrium for the finitely repeated game
is not unique. What is defined is the total sum that indi-
viduals should contribute at the equilibrium. However who
should contribute what is not determined. If all agents
use the same rule one might expect a symmetric result,
but this is not what we observe. If each agent learns to
contribute a certain amount and the total corresponds
to the Nash Equilibrium (NE), then we have to explain
how agents come to self organise in this way. More in-
terestingly, if individuals contribute different amounts in
different periods but the total still corresponds to the NE
then this coordination has also to be explained. A cursory
examination of our data reveals that individuals are not
playing “mixed strategies” with fixed probabilities of con-
tributing each of the possible sums. Thus the coordination
mechanism is unexplained1.

We proceed as follows in this paper. We analyse data
from a series of games of contributions to public goods and
firstly to see what happens, if we follow the standard ap-

1 Efforts have been made to aid the coordination by intro-
ducing artificial labels which the players can choose between
each round (see Page et al. [11]). In this situation the players
sort themselves into groups by the amounts contributed. Sol
et al. [12] allow players to sign binding agreements as to the
contributing group they will form and find that the players do
not coordinate on the Nash equilibrium of this game but para-
doxically move in the direction of the collective optimum over
time.
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proach and first determine the trend of contributions and
then test a learning model on the average data. We next
look at group and then individual data, examine how this
changes the results and then see if some general model
such as the EWA with varying parameters can account
for individual behaviour. Our case is rather favourable for
this sort of test since, by telling agents how much was
contributed to the public good in total, at each step, we
allow them to know how much they would have obtained
from foregone strategies. This avoids a fundamental prob-
lem raised by Vriend [13], as to how agents can update the
weight they put on strategies which they have not played
if they do not know how much these would have paid. We
find that, nevertheless, behaviour differs across groups and
individual behaviour is not easily categorized.

It is worth recalling that, in this type of experiment,
individuals are divided into groups who play the game for
a fixed number of periods. Thus the groups are unaffected
by each other’s behaviour. Yet the population, taken as a
whole, seems to learn in a simple way. However, the sepa-
rate groups do not learn as supposed, and their behaviour
differs markedly from one group to another. Furthermore,
behaviour of the individuals who make up the groups also
varies within those groups.

The usual explanation for some of the discrepancies in
strategies in the early rounds of public goods games, as
Ledyard [1] explains, is that confusion and inexperience
play a role. Indeed, this is one of the basic reasons why
repetition has become standard practice in these experi-
ments. Yet, as we will see, this would not be enough to
explain some of the individual behaviour observed in our
data.

We now specify the model used for the experiments
and the rest of the paper will be structured as follows.
Firstly we will explain the particular features of our model
and their advantages. Then we will give the details of the
experiments we ran. We will then describe the data from
the experiments. In the following section we will perform
some simple tests on the average data for the whole popu-
lation, for the group averages and finally for the individu-
als. Having pointed out the differences between these, we
proceed to an analysis of the performance of the EWA rule
on individual data and compare this with our previous re-
sults. We then conclude.

2 The model

2.1 The basic public goods game

In the basic game of private contribution to a public good,
each subject i, (i = 1, ..., N) has to split an initial endow-
ment E into two parts: the first part (E − ci) represents
his private share and the other part ci represents his con-
tribution to the public good. The payoff of each share
depends on and varies with the experimental design, but
in most experiments is taken to be linear (Ref. [14]). The
total payoff πi of individual i, in that case is given by the

following expression:

πi = E − ci + θ

N∑

j=1

cj .

This linear case gives rise to a corner solution. In fact,
assuming that it is common knowledge that players are
rational payoff maximisers, such a function gives a Nash
equilibrium (NE) for the one shot game at zero and full
contribution as social optimum. The dominant strategy
for the finite repeated game, is to contribute zero at each
step. Nevertheless, experimental studies show that there
is generally over-contribution (30 to 70% of the initial en-
dowments) in comparison to the NE.

Attempts to explain this difference between the theo-
retical and the experimental results are the main subject
of the literature on private contribution to public goods.
To do so, several pay-off functions with different parame-
ters have been tested in various contexts to try to see the
effect of their variation on subjects’ contributions (for sur-
veys, see Davis and Holt [15], Ledyard [1] and Keser [16]).

In the linear case, given that the NE is at zero, and giv-
ing that subjects could not contribute negative amounts to
the public good, error can only be an over-contribution. To
test the error hypothesis experimentally, Keser [17] per-
formed a new experiment. She proposed a design in which
the payoff function is quadratic and the equilibrium is a
dominant strategy in the interior of the strategy space.
With such a design, undercontribution becomes possible
and error on average could be expected to be null. The re-
sults of Keser’s experiment show that in each period, con-
tributions are above the dominant solution, which leads
to the rejection of this error hypothesis.

Another way to introduce an interior solution is to use
a linear payoff for the private good and a concave function
for the public one. Sefton and Steinberg [18] compare these
two possible payoff structures. They call the first one “the
Dominant strategy equilibrium treatment” and the sec-
ond “the Nash equilibrium treatment”. The results show
that “average donations significantly exceed the predicted
equilibrium under both treatments, falling roughly mid-
way between the theoretical equilibrium and optimum...
Donations are less variable under the dominant strategy
equilibrium treatment than under the Nash equilibrium
treatment”.

2.2 Our model

The theoretical model and design used for the experiments
we report in this paper concerns a public goods game with
a “Nash equilibrium treatment”. The individual payoff
function is

πi = E − ci + θ

⎛

⎝
N∑

j=1

cj

⎞

⎠
1/2

.

The Nash equilibrium and the social optimum correspond-
ing to this payoff structure are not trivial solutions but in
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Table 1. The NE and the CO values for the four treatments
for one group.

Value of θ∗ Treatment Endowment Symmetric NE CO
4 L 280 4 64

5.66 M 280 8 128
6.93 H 280 12 192
8.94 VH 280 20 280

∗ These are approximate values. The exact values are respec-
tively: 4, 5.6568542, 6.9282032 and 8.9442719. We choose these
values such that the CO corresponds respectively to 64, 128,
192 and 280.

Table 2. The symmetric NE and the CO values for the four
treatments for one subject.

Value of θ Treatment Endowment Symmetric NE CO
4 L 70 1 16

5.66 M 70 2 32
6.93 H 70 3 48
8.94 VH* 70 5 70

the interior of the set of possible choices. The Nash equi-
librium for individuals is not a dominant strategy for the
finite repeated game. Indeed the solution for that game
poses problems for a simple reason. There is a unique
Nash equilibrium in the sense that for any Nash equi-
librium the group contribution is the same. However, as
we have said, that contribution can be obtained by sev-
eral combinations of individual contributions. Since there
are many Nash equilibria for the one-shot game, precisely
what constitutes an equilibrium for the repeated game is
unclear. For a group of N subjects, at the CO the total
contribution is given by the following expression:

Y =
N∑

i=1

yi = N2 ·
(

θ2

4

)

and at the NE is equal to:

Y ∗ = N · y∗ =
θ2

4

where y∗ is the symmetric individual Nash equilibrium.
With such a design, the Nash equilibrium and the

social optimum vary with the value of θ. We shall see
whether there is any difference between the evolution of
individual and aggregate contributions under the differ-
ent treatments.and how well learning models explain this
evolution.

We gave θ four different values, which give four levels
for the CO and the NE. The following tables summarize
the four treatments (Low, Medium, High and Very High)
the different levels of interior solutions for each group of
four (N = 4) persons (Tab. 1) and for the individual sub-
jects in each group (Tab. 2).

The set of possible group contributions in our model is
very large. In fact, given that each one of the four individ-
uals of a group is endowed with 70 tokens, each group can
contribute an amount that varies between zero and 280.

We also examined situations in which individuals had
more or less information about what the members of their

Fig. 1. Information about neighbours contributions with an
H treatment Design.

group were doing or claimed they were going to do. It
might be argued that knowing who had offered what or
had given what would lead to more interactive behaviour
and change the behaviour of the individuals. For this we
added two other features and we again looked not only at
the effect of variations in θ but also at the variability of
individual behaviours. In the first variant, we replicated
the same experiment as before with the introduction of
promises before the decision period relative to the con-
tribution to the public good. The four treatments with
promises are called LP, MP, HP and VHP.

In the last series of experiments, we introduced, as a
parameter, the information about the contribution of some
members of one group to the public good. Three treat-
ments were compared to the treatment H. This treatment
is used as a benchmark (no-information treatment) and is
chosen because it allows us to keep the CO in the interior
of the strategy space but, at a high level. The three new
treatments with information are 1N, 1P and 2N and have
the same theoretical benchmarks as treatment H (same
CO and NE). In theory, the information which is provided
after the end of the one-shot game should have no effect
on the outcome.

While in treatment H individuals are informed only of
the sum of contributions of their group, in treatment 1N
each one of the four individuals in a group knows at the
end of each period the contribution of his right neighbour,
in addition to the sum of contributions of the group. In
treatment 1P, each individual in a four persons group has a
partner with whom he exchanges information about their
own contributions. These Partners are the same for all the
periods of the game. Finally, in the last treatment (2N),
for each individual information concerns two Neighbours,
the right one and the left one. The figure above (Fig. 1)
depicts these four treatments.
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In all treatments, and for every period, information
given to players always concerns the same individuals.

The data from these three new treatments is also used
to test the learning models at the population, group and
individual level. This allows us to see whether the results
in our reference framework are robust to different “insti-
tutional frameworks”.

The following section presents the experimental results
for the four treatments of both experiments with (treat-
ments LP, MP, HP and VHP) and without (treatments L,
M, H and VH) promises and those of the three new treat-
ments with information (treatments 1N, 1P and 2N).

3 The experimental results

Our initial analysis will be at the aggregate level where we
have for each treatment the average contribution of the six
groups compared to the aggregate NE and to the aggre-
gate CO. These results are reported in Figure 2 for the
four treatments without promises, in Figure 3 for the four
treatments with promises and in Figure 11 for treatments
with information.

3.1 Basic results without promises

The first thing we observe when analysing the experimen-
tal results is the fact that the average group contribu-
tion (Y ) decreases over time. In fact, the Very High treat-
ment (θ = 8.94), has 133.33 and 91.5 as values of the
first and the last periods (see Fig. 2). In the case of the
H and the M treatments, the average group contribution
(Y ) decreases during the 10 first periods and stays at a
steady level during the rest of the periods of the game.
In the last treatment L, this average group contribution
starts at 67.67 and decreases steadily during the 25 pe-
riods of the game until finishing at 7.16. The decrease in
contributions is however less evident in the VH treatment.
In general, if we overlook the first five periods that could
be assimilated to “learning periods”, contributions are al-
most steady over the twenty last periods for the M, H and
VH treatments.

Our results show that contributions vary with the CO
level. There is overcontribution in comparison to the NE.
As the CO level increases so does overcontribution. Nev-
ertheless, average contributions as a proportion of the CO
do not increase. Thus, computing these contributions in
relative values by calculating an overcontribution index
that takes into account the NE and the CO, shows that,
except in the VH treatment, this ratio is constant.

In the L treatment, the average group contribution
seems to decrease and to tend steadily to the NE value
(which is 4). For this treatment, where the CO level is
very low, subjects seem to tend to the theoretical pre-
dicted value for the one-shot game. The difference between
the theoretical prediction and the experimental results is
less evident in this framework as the game proceeds and
indeed, such a close approximation to the NE is rarely
observed in the experimental literature relative to public

Fig. 2. Average total contribution in treatments VH, H, M
and L without promises.

goods. It seems somewhat paradoxical that subjects con-
tribute less and learn to play the NE value when the CO
is low. For this is precisely the case in which the CO is
easy to reach in the sense that it does not require a large
contribution. For high levels of the CO, it is, in fact, risky
for one subject to cooperate and to try to reach the so-
cial optimum by contributing a large amount to the public
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good. Taking such a risk can lead one subject to share his
or her contribution with other subjects that choose not
to contribute, and, in so doing, to lose, most of his or her
private payoff. Thus the risk when faced with “free riding”
behaviour is higher as the CO increases.

The other side of the coin is that the gains to be had
from contributing more collectively are higher when the
CO is higher. One natural idea is that individuals make
generous contributions initially to induce others to do the
same. This is, of course, not consistent with optimising
non-cooperative behaviour but has been evoked in consid-
erations of non-equilibrium behaviour.

3.2 Results with promises

Promises are introduced in the public goods game as a
step preceding real contributions. In each group, and in
each period, individuals are asked to announce their in-
tentions as how much they will effectively contribute in
the considered period. The sum of these intentions is re-
vealed to the members of the group. Thus this information
become common knowledge before the beginning of real
game where individuals announce their effective contribu-
tions that will be considered when calculating their gains.
Intentions or promises that are not binding are considered
in game theory as “cheap talk”, since the gains from dif-
ferent actions are not affected by their introduction. Also,
the NE and the CO of the game are the same as in the
game without promises.

As might be intuitively expected, and in concordance
with findings in experimental literature, the introduction
of promises does increase contributions to the public good,
although this increase is not very marked. Consequently,
the average group contributions are further from the Nash
equilibrium than in treatments without promises.

What is interesting from our point of view is that the
main difference between treatments with promises and
those without promises is obviously the heterogeneity of
groups and individuals behaviour when promises are al-
lowed. In fact, the data permits to isolate, in treatments
with promises, different strategies that do not exist in
treatments without communication. Since the various lev-
els of the treatment provide essentially similar results we
show only one as an illustration.

3.3 Results with differing information

While the introduction of promises increases contributions
to the public good, information about the contribution of
the other members of one group seems to have no effect
on the decision of contribution of individuals. In fact, as
shown in the following figure (Fig. 4), where we represent
average total contributions for the three treatments with
information and for treatment H (already given in Fig. 2),
the experimental results show that there is no difference
between contributions with information and contributions
without. The aggregate behaviour is very similar in the
four treatment: overcontribution is evident during all the

Fig. 3. Average total contribution in treatments HP with
promises.

Fig. 4. Average total contribution in treatments H, 1N, 1P
and 2N.

Table 3. Average total contribution in treatments H, 1N, 1P
and 2N.

Treatment First Average over Last Max. Min. St. Dev.

period 25 periods period

H 145.33 93.87 58 145.33 58 21.98

1N 167.83 94.12 31.83 187.67 31.83 42.97

1P 129.33 93.51 33.33 150.5 33.33 32.75

2N 149.17 97.74 32.83 178.17 31.83 43.64

experiment and decreases over time, as contributions be-
come closer to the NE.

Note that in all treatments, contributions start by in-
creasing and are very close to the CO in the first periods of
the game. Also, average total contribution is almost the
same for three of the four treatment in the last period.
Table 3 summarises the results for these four treatments.

These results are in concordance with other experi-
ments where information is introduced in some way in a
public goods game. See, for example Cason and Khan [19],
and Ledyard [1].

In the following section, we will test a simple learn-
ing model both on the aggregate level to see whether this
model fits the experimental data and whether this is still
the case when we examine individual and group data.

The data that will be used for these tests are from
treatment H without promises, treatment H with promises
and treatments 1N, 1P and 2N with information. This
choice is based on the fact that all these treatments have
the same theoretical payoff function (high level of social
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Fig. 5. Contributions of the six groups in
treatment H (without promises).

Fig. 6. Number of individual contributions for
each interval for the 5 treatments (3000 deci-
sions).

optimum). Since all these cases have the same theoretical
solutions we have, in comparable situations, 24 persons
playing 25 periods, and we have then 3000 observations
or decision of contribution.

3.4 The group and the individual level

Although at the aggregate level behaviour seems rather
consistent, in all treatments, there are at the group
level different behaviours in the same group and between
groups. The latter are not regular and we can clearly iden-
tify different attitudes to contribution. Figure 5 shows
the contribution of the six groups in treatment H with-
out promises and gives us an idea about this variation
between groups.

Within groups, at the individual level, there is also a
difference between the individual and the aggregate be-
haviour (see Ref. [20]). In fact, individuals behave differ-
ently. Moreover, the individual behaviour is more difficult
to classify because of the great volatility of contributions
of one subject during the 25 periods of the game.

To have an idea as to the different levels of contribu-
tions of individuals, we classify contributions in 8 intervals

of ten each and we present in Figure 6 the number of times
individuals make a contribution belonging to each inter-
val. As in each of the 5 treatments there are 24 persons
playing 25 periods, we have then 3000 observations or de-
cision of contribution. As we can see in Figure 6, almost
all the intervals are significant.

To isolate the different strategies that could explain the
differences between the behaviour of different individuals,
we also compare for the 5 treatments and for the 25 deci-
sions of each individual her contribution in period (t) to
her contribution in (t−1). This allows us to know whether
individuals react in response to past contributions. We
classify this comparison into three possibilities: contribu-
tion in t increases, decreases and remains unchanged in
comparison to contributions in t− 1. Figure 7 shows that
all these strategies are significant.

When we test econometrically for treatment H the
model:

Ct = a + βCt−1 + εt.

We find that β is significant for the aggregate and for the
6 groups while it is not for 13 subjects out of 24.



156 The European Physical Journal B

Fig. 7. Percentage of increasing, decreasing and
unchanged individual contributions in t com-
pared to t − 1 for the 5 treatments (3000 ob-
servations).

The assumption β = βi, ∀i = 1, ..., 4 is also rejected for
all the individuals of the 6 groups. Thus we can conclude
that individuals are heterogeneous.

4 Simple tests of the learning model

We will first present the “Reinforcement learning model”,
(R.L.) and we will then test this simple model at the ag-
gregate level using the experimental data.

4.1 The reinforcement learning model

Two properties of human behaviour in the set of situations
we analyse are mentioned in the psychology literature. The
first one, known as the “Law of Effect” reflects the fact
that choices that have led to good outcomes in the past
are more likely to be repeated. The second one is called
the “Power Law of Practice” and announces that learning
curves tend to be steep initially, and then flatter. Another
property is also observed, which is “recency”, according to
which recent experience may play a larger role than past
experience in determining behaviour.

There exists a wide variety of learning models in the
literature. We will use a simple learning model and apply
it to our experiments. The model here is the basic rein-
forcement learning model used for example by Roth and
Erev [3]. There are several variations of this model. In
the one parameter reinforcement model, each player i, at
time t = 0, before the beginning of the game, has an ini-
tial propensity to play his kth pure strategy. Let Ai

k(0) be
this initial propensity. When a player receives a payoff x
after playing his kth pure strategy at time t, his propen-
sity to play strategy k is updated. The rule for updating
these propensities from a period to another is given by the
following relation:

Ai
k(t + 1) = Ai

k(t) + x.

The propensities to play the other pure strategies j are

Ai
j(t + 1) = Ai

j(t).

These propensities allow player i to compute the proba-
bility that he plays his kth strategies at time t. Let this
probability be

pi
k(t) =

exp(λ · Ai
k(t))

mi∑
j=1

exp(λ · Ai
j(t))

where the sum is over all of player i’s pure strategies j2.

4.2 The simple test of the reinforcement learning
at the aggregate level

We will apply the reinforcement learning model to the ag-
gregate level of the 5 treatments. We divide the set of pos-
sible contributions ([0; 280]) into ten equal intervals ([0;
28)]; [29; 56]; [57; 84]; . . . ; [252; 280]). At time t = 0, all
the possible levels of contribution have the same attraction
and the same probability to be chosen. In period 1, the
strategy chosen in the data at the aggregate level receives
the payoff x as explained above. At each of the 25 peri-
ods, the aggregate contribution of each treatment of one
given period played in the real experiment is updated.
This model is applied to each of the 5 treatments and the
average of these results is calculated and presented in Fig-
ure 8. This figure shows that the strategy that is played
the most according to the reinforcement learning model is
to contribute an amount corresponding to the fourth in-
terval, that is [85; 112]. This result obviously corresponds
to the experimental data given that we are using this data
to update the observed chosen strategies.

5 The performance of the EWA rule
on aggregate and individual data

In this section, we will present the EWA learning model
and we will next apply it to the aggregate and the individ-

2 This well-known rule is also referred to as the “Quantal
response” rule or the “logit” rule and can be justified as opti-
mizing the trade-off between “exploration” and “exploitation”.
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Fig. 8. The average probability of playing each of
the 10 set of strategies when applying the Rein-
forcement learning model to the aggregate level of
the six treatments.

ual level using the same data as those used in the previous
section (the 5 treatments’ data).

5.1 The EWA learning model

The details of the Expected Weighted Attraction (EWA)
model can be found in Camerer and Ho [7,21] and Ho
et al. [22]. Consider N players indexed by i, where i =
1, 2, ..., N . Let Aj

i (t) denote the attraction of strategy j for
player i once period t is played, where j = 1, 2, ..., mi. The
attraction of the different strategies in the EWA learning
model are updated differently. The chosen strategies re-
ceive an attraction equal to the payoff πi player i receives
as a result of his choice, while the attractions of the un-
chosen strategies are updated by adding only a part δ of
the foregone payoff. Thus, the parameter δ is the weight a
player puts on the unchosen strategies. Let sj

i denote the
strategy j of player i, and s−i(t) be the strategies chosen
by all the players, except for player I, in period t. Attrac-
tions of strategies are updated according to the payoffs
these strategies provide, but also according to the payoff
that unchosen strategies would have provided. Recall that
it is not always obvious that this information will actually
be available to the players. In our case the fact that the
individuals are apprised of the total contributions allows
them to work out what the foregone payoffs of unchosen
strategies would have been. The rule for updating attrac-
tions in period t is:

Aj
i (t) =

φ·N(t−1) · Aj
i (t−1)+[δ+(1−δ)·I(sj

i, s
j
i (t))]·πi(s

j
i , s−i(t))

N(t)

where I(x, y) is an indicator function that is equal to 1 if
x = y and to 0 if not. πi(s

j
i , s−i(t)) is the payoff of player i

when he plays strategy j while the other players play the
combination of strategies s−i(t).

The parameter φ is a discount factor used to depreci-
ate the previous attractions so that strategies become less
attractive over time.

N(t) is the second variable updated in the EWA learn-
ing model. It is the experience weight used to weight
lagged attractions when they are updated. N(t) is up-
dated according to the rule:

N(t) = φ(1 − κ) · N(t − 1) + 1

where t � 1.
The parameter κ controls whether the experience

weight depreciates more rapidly than the attractions.
At t = 0, before the game starts, the two variables

Aj
i (t) and N(t) have initial values Aj

i (0) and N(0).
The probability of choosing a strategy j by player i in

period (t + 1) is calculated by using a logit form:

pj
i (t + 1) =

exp(λ · Aj
i (t))

mi∑
k=1

exp(λ · Ak
i (t))

where λ controls the reaction of players to the difference
between strategies attractions. A low value of λ implies
an equal probability for choosing strategies, while a high
value supposes that players are more likely to chose strate-
gies with higher attractions.

We note that the reinforcement learning model is a
special case of the EWA model. In fact, when φ = 1,
κ = 1, λ = 0 and N(0) = 1, attractions are updated in
the same way as in the cumulative reinforcement learning
model. The EWA learning model includes the reinforce-
ment learning model and other learning models such as
belief learning as special cases (Ref. [7]).

5.2 The test of the EWA learning model
at the aggregate level

We ran simulations using the same theoretical function as
that used in our 5 treatments. We calculate the probabil-
ity of playing each possible contribution by updating the
initial propensities of each strategy using the EWA learn-
ing model. The parameters used are those which best fit
the model.



158 The European Physical Journal B

Fig. 9. The probability of each of the 25 chosen strategies
using the EWA learning model.

First, we play the public goods game 25 periods where
the simulation program chooses randomly in the first pe-
riod one of the 281 possible levels of contribution ([0; 280]).
This means that in the first period, all the strategies have
the same probability of being chosen. The propensity of
the strategy chosen in the first period is updated accord-
ing to the EWA learning model. Next, the simulation pro-
gram calculates for each strategy the probability of its
being played in period 2. Obviously, the strategy chosen
in period 1 has a greater probability of being chosen in
period 2. In the second period, the simulation program
chooses a new strategy using the new probabilities of be-
ing played for each strategy.

This program is run for 25 periods. Figure 9 is an ex-
ample of 25 strategies belonging to the interval [0; 280]
and chosen by the simulation program.

We repeat this simulation 1000 times and we calculate
the average of the probabilities of all the chosen strategies.
The result is presented in Figure 10.

5.3 The test of the EWA learning model
at the individual level

We apply the same simulation program (run 1000 times)
for a set of possible strategies that corresponds to the set
available to one person playing the public goods game.
This set of strategies is [0; 70]. The payoff of one player
depends on his strategy but also on the choice of the three
other players of the same group who are playing the game.
The results are presented in Figure 11.

5.4 Comparison with the simple learning model

The simple learning model predicts that the strategies
that have the highest probabilities of being played are

Fig. 10. The average of the probabilities of 1000 repeated
simulation of the 25 periods public goods game using the EWA
learning model.

Fig. 11. The average of the probabilities of 1000 repeated
simulation of the 25 periods public goods game for one player
using the EWA learning model.

those which belong to the interval [85; 112]. The results
of simulations applied at the aggregate level show that
high contributions have the highest probabilities of being
played. Obviously, this does not correspond to the exper-
imental findings where low contributions are more likely
to be played and where contributions decrease over time.

Simulating the EWA model for single players playing
the public goods game shows that contributions belong-
ing to the interval [40; 60] have the highest probabilities of
being played (Fig. 11). This is not in accordance with the
observed strategies. Furthermore, the EWA model would
suggest an essentially monotone evolution. Whilst this is
observed at the aggregate level for all treatments, this is
far from being the case for the groups and the individuals.
The behaviour of players seems to differ widely across in-
dividuals and what is more there is no convergence to any
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common behaviour. Players seem to play out of equilib-
rium strategies and this does not correspond to any simple
learning model.

6 Conclusion

The simple point made in this paper is that what seems
to be rather systematic behaviour at the aggregate level
which persists in various treatments of the public goods
game, does not reflect such systematic behaviour at the
group or individual level. People within groups interact
and react to the contributions of the other members of
the group. This may lead to very different levels of total
contributions across groups and over time. Furthermore,
different groups do not necessarily exhibit the uniform de-
cline in total contributions which is observed at the aggre-
gate level across all treatments.

Rather different versions of our basic experiment yield
similar results so the difference between the individual and
aggregate level cannot be attributed to some specific in-
stitutional feature of our experiments.

What it is that causes the variation across indivduals
remains an open question. Simplistic explanations such
as “degrees of altruism” do not seem to be satisfactory.
What does seem to happen is that some individuals try to
signal to others by means of their contribution. They may
hope, in so doing, to induce higher payments from their
colleagues. If this is what they are doing then they violate
some of the simple canons of game theory.

What is clear is that the players do not, in general
manage to coordinate on cooperative behaviour. Thus, in
the set-up here the optimistic conclusion that cooperation
will emerge, found in the “Prisoner’s Dilemma” literature
does not seem to be justified. Free riding is something
which on average increases over time but many individu-
als do not follow this pattern. To sum up, the behaviour
of individuals varies considerably, but the complexity of
the interaction is washed out in the average. Neverthe-
less, this should not lead us into the trap of attributing
individual behaviour to the aggregate nor, and worse, of
concluding from the apparent aggregate learning process,
that individuals are learning in this way.
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